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algebra generalizing screening currents ofq-deformed
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Abstract. In this paper, we propose an elliptic algebraAq,p;π̂ (ĝl2) which is based on the

relationsRLL = LLR∗, whereR and R∗ are the dynamicalR-matrices ofA(1)1 -type face
model with the elliptic moduli shifted by the centre of the algebra. From the Ding–Frenkel
correspondence, we find that its corresponding (Drinfeld) current algebra at level one is the
algebra of screening currents forq-deformed Virasoro algebra. We realize the elliptic algebra
at level one by Miki’s construction from the bosonization for the type I and type II vertex
operators. We also show that the algebraAq,p;π̂ (ĝl2) is related to the algebraAq,p(ĝl2) by
dynamically twisting.

1. Introduction

As the quantum form of fundamental Poisson bracket, the ‘RLL = LLR’ relations
(or ‘RLL’ formalism) define various quantum algebra which appear in quantum field
theory (QFT) and statistical mechanics. It is associated with structure constants—theR-
matrix satisfying the Yang–Baxter equation [1, 2]. Drinfeld and Jimbo have discovered
a fundamental algebra structure—quantum algebraUq(g) where g is some finite- or
infinite-dimensional Lie algebra [3, 4]. Faddeev, Reshetikhin and Takhtajan [5] realize
the algebraUq(g) (FRT construction), whereg is some finite-dimensional Lie algebra, by
the ‘RLL’ formalism with a spectral parameter independentR-matrix. Later, Reshetikhin
and Semenov-Tian-Shansky [6] constructed a new realization ofq-deformed affine algebra
by the ‘RLL’ formalism with a trigonometricR-matrix (which are the so-called RS
relations) characterized by the spectral parameter shifted with the centre of the algebra.
Ding and Frenkel [7] gave the isomorphism between the realization given by Reshetikhin
and Semenov-Tian-Shansky and the Drinfeld realization ofq-deformed affine algebra.
Moreover, Khoroshkin [8] successfully constructed the realization of Yangian Double with
centreDYh̄(ĝ) in the‘RLL’ formalism [9], which is associated with the rationalR-matrix.
Foda et al proposed an elliptic extension of the quantum affine algebraAq,p(ŝl2) [10]
as a symmetric algebra for the eight-vertex model. The elliptic algebra is based on the
generalized ‘RLL’ formalism: RLL = LLR∗ , whereR andR∗ are eight-vertexR-matrices
with elliptic moduli differing by an amount depending on the levelk of the representation
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on whichL acts. The algebraAh̄,η(ŝl2) as the scaling limit of the elliptic algebraAq,p(ŝl2)
was formulated in the ‘RLL = LLR∗’ formulation by Jimboet al [36] and was studied
by Khoroshikinet al [8] through the Gauss decomposition. In fact, the above-mentioned
progress in ‘RLL’ formalism all involve vertex-type models.

Another progress of quantum algebra focuses on theq-deformation [11–13] and ¯h-
deformation [14] of Virasoro andW algebra, andq-deformed extended Virasoro algebra
(suggested by Konno in [27]), which would play almost the same role in off-critical
integrable model as that of Virasoro,W algebra and extended Virasoro algebra [38–40]
in two-dimensional conformal field theories (CFT) [15] for the critical model.q-deformed
Virasoro (q-Virasoro) algebra andq-deformed extended Virasoro (extendedq-Virasoro)
algebra arise in the two-dimensional solvable lattice models [12, 17, 27] (e.g. ABF model
[19] etc); h̄-deformed Virasoro (¯h-Virasoro) algebra is studied as the hidden symmetry of
the massive integrable field models (e.g. the restricted sine-Gordon model [14]). It was
shown that the screening currents forq-Virasoro algebra [12, 13, 20, 21, 41] and ¯h-Virasoro
algebra [14] satisfy a closed algebra relation which is some further deformation ofq-affine
algebra and Yangian double with centre. In another way,q-Virasoro algebra, extended
q-Virasoro and ¯h-Virasoro algebra can be reconstructed as the algebra which commutes
with the screening currents up to a total difference [17, 42, 43]. Apparently, they constitute
the hidden symmetries in theA(1)1 -type face model [12]. So, the studies of the algebraic
structure of the screening currents forq-Virasoro, extendedq-Virasoro and ¯h-Virasoro are of
great importance. In this paper, we deal mainly with the screening algebra forq-Virasoro
algebra and possibly the extendedq-Virasoro, as a byproduct, the screening algebra for
h̄-Virasoro algebra and related ¯h-deformed extended Virasoro algebra can be obtained by
taking the scaling limit of theq-deformed version.

The ‘RLL’ formalism was originally formulated for the nondynamical Yang–Baxter
equation (or the vertex-type models), Felder [25] succeeded in extending it to incorporate
the dynamical Yang–Baxter equations (Gervais–Neveu–Felder equation) [22] which is
associated with theq-deformation of the Knizhnik-Zamolodchikov-Bernard equation on
a torus. In fact, the ‘RLL’ formalism given by Felder [25] and Enriquezet al [22] is a
dynamical version of the FRT construction and RS relations respectively. In this paper, we
extend the works of Fodalet al [10] to the dynamicalR-matrix case. Namely, we propose
an elliptic algebraAq,p;π̂ (ĝl2) based on the relationsRLL = LLR∗, whereR andR∗ are
the dynamicalR-matrices forA(1)1 face model (i.e. the solution to the star–triangle relation in
theA(1)1 -type face model) with elliptic moduli shifted by the centre of the algebra. Using the
Ding–Frenkel correspondence, we construct Drinfeld currents for the algebraAq,p;π̂ (ĝl2).
From the Drinfeld currents for the algebra (which is a subalgebra ofAq,p;π̂ (ĝl2)), we show
that the (Drinfeld) current algebra at level one and a higher level is just the algebra of
screening currents forq-Virasoro algebra and the algebra of screening currents for the
extendedq-Virasoro algebra [27] respectively. The algebra of screening currents at level
one was studied by Awataet al [12] for q-Virasoro algebra and by Feiginet al [13, 21] for
q-deformedW algebra, which is some elliptic deformation of affine algebra. The elliptic
algebraAq,p;π̂ (ĝl2) at a higher level would play an important role in the studies of the fusion
ABF models [26, 29] and relate to the extendedq-Virasoro algebra. Moreover, the algebra
Aq,p;π̂ (ĝl2) is the dynamical twisted algebra [23–25, 44] of the elliptic algebraAq,p(ĝl2).

This paper is organized as follows. Section 2, after reviewingq-Virasoro algebra, we
introduce the algebra of screening currents forq-Virasoro algbera. In section 3, we construct
an elliptic algberaAq,p;π̂ (ĝl2) in terms of anL±-operator which satisfies the dynamical
relations ofRLL = LLR∗ formulation. From Ding–Frenkel correspondence, we find that
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the corresponding dynamical Drinfeld current form a subalgebra which structure constants
do not depend upon the dynamical variable and is just the algebra of screening currents
for extendedq-Virasoro algebra. The twisted relations between the algebraAq,p;π̂ (ĝl2) and
Aq,p(ĝl2) is constructed. In section 4, the bosonization of the type I and type II vertex
operator for the algebraAq,p;π̂ (ĝl2) at level one is constructed. By the Miki’s construction,
we obtained the bosonization for the algebraAq,p;π̂ (ĝl2) at level one. The corresponding
generalizing algebraAh̄,η;π̂ (ĝl2) for h̄-deformed Virasoro algebra and ¯h-deformed extended
Virasoro algebra, which is the scaling limit of the algebraAq,p;π̂ (ĝl2), is studied in section 5.
Finally, we give a summary and discussions in section 6. The appendix contains some
detailed calculations.

2. Algebra of screening currents forq-Virasoro algebra

We start by defining q-Virasoro algebra and the corresponding quantum Miura
transformation.

2.1. q-Virasoro algebra and the quantum q-deformed Miura transformation

Let w be a generic complex number with Im(w) > 0 andr be a real number with 4< r,
and setx = eiπw. Define elliptic functions

θ

[
a

b

]
(z, τ ) =

∑
m∈Z

exp{iπ [(m+ a)2τ + 2(m+ a)(z+ b)]} Im(τ ) > 0

σα = σ(α1,α2)(z, τ ) = θ
[ 1

2 + α1
2

1
2 + α2

2

]
(z, τ )

θ(k)(z, τ ) = θ
[− k

2
0

]
(z, 2τ).

We shall use the following abbreviation

[v]t = x v2

t
−v2x2t (x2v) = σ0

(
v

t
,− 1

tw

)
× constant 0< t

2q(z) = (z; q)(qz−1; q)(q; q) (z; q1, . . . , qm) =
∞∏

i1,...im=0

(1− zqi1 . . . qim).

The q-Virasoro algebra is generated by{T (z)} with the following relations [11–13]

f

(
w

z

)
T (z)T (w)− f

( z
w

)
T (w)T (z)

= (xr − x−r )(x(r−1) − x−(r−1))

x − x−1

(
δ

(
w

x2z

)
− δ

(
x2w

z

))
(1)

whereδ(z) =∑n∈Z z
n and

f (z) = (1− z)−1 (zx2r; x4)(zx2−2r; x4)

(zx2+2r; x4)(zx4−2r; x4)
.

The generatorsT (z) for q-Virasoro algebra can be obtained by the following quantum
q-deformed Miura transformation

T (z) = 3(x−1z)+3−1(xz). (2)
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Defineq-deformed bosonic oscillatorsβm(m ∈ Z/{0})

[βm, βn] = m(x
m − x−m)(x(r−1)m − x−(r−1)m)

(x2m − x−2m)(xrm − x−rm) δm+n,0 (3)

and zero-mode operatorsP andQ such that [P, iQ] = 1.
Then the fundamental operator3(z) can be realized byq-deformed bosonic oscillators

(see equation (3)) as follows

3(z) = x
√

2r(r−1)P : exp

{ ∞∑
m6=
(xrm − x−rm)βm

m
z−m

}
. (4)

2.2. Algebra of screening currents

Let us introduce the screening currentsE(v), F (v) for q-Virasoro algebra

E(v) = ei
√

2(r−1)
r

(Q−i2v ln xP ) : e
∑

m6=0
xm+x−m

m
βmx

−2vm
: (5)

F(v) = e−i
√

2r
r−1 (Q−i2v ln xP ) : e−

∑
m6=0

xm+x−m
m

β ′mx
−2vm

: (6)

whereβ ′m = xrm−x−rm
x(r−1)m−x−(r−1)m βm. Besides the well known bosonic realization of screening

currentsE(v), F (v), let us introduceH±

H−(v) = −x−4v : E(v + 1
4)F (v − 1

4) : (7)

H+(v) = −x−4v : E(v − 1
4)F (v + 1

4) : . (8)

The screening currents commute with the generators ofq-Virasoro algebra up to a total
difference and form a closed algebra. In fact, from the normal order in appendix A, one
can find that the screening currents defined in equations (5)–(8) realize an algebra satisfying
the relations

E(v1)E(v2) = [v1− v2− 1]r
[v1− v2+ 1]r

E(v2)E(v1) (9)

F(v1)F (v2) = [v1− v2+ 1]r−1

[v1− v2− 1]r−1
F(v2)F (v1) (10)

[E(v1), F (v2)] = 1

x − x−1
{δ(v1− v2+ 1

2)H
+(v1+ 1

4)− δ(v1− v2− 1
2)H

−(v1− 1
4)} (11)

H±(v1)E(v2) =
[v1− v2− 1∓ 1

4]r

[v1− v2+ 1∓ 1
4]r
E(v2)H

±(v1) (12)

H±(v1)F (v2) =
[v1− v2+ 1± 1

4]r−1

[v1− v2− 1± 1
4]r−1

F(v2)H
±(v1) (13)

H±(v1)H
±(v2) = [v1− v2+ 1]r−1[v1− v2− 1]r

[v1− v2− 1]r−1[v1− v2+ 1]r
H±(v2)H

±(v1) (14)

H+(v1)H
−(v2) =

[v1− v2+ 1+ 1
2]r−1[v1− v2− 1− 1

2]r

[v1− v2− 1+ 1
2]r−1[v1− v2+ 1− 1

2]r
H−(v2)H

+(v1) (15)

whereH−(v) = H+(v+ 1
2−r). The algebra of screening currents written by Awata [12] has

similar algebraic relations to ours. Actually, the screening currents defined in equations (9)–
(15) realize the (Drinfeld) current algebra of an elliptic algebraAq,p;π̂ (ĝl2) at level one,
which will be given by ‘RLL’ formalism in the following section.
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3. The dynamical algebraAq,p;π̂(ĝl2)

We propose an elliptic algebraAq,p;π̂ (ĝl2) based on a dynamicalRLL = LLR∗ relation.
Then using Ding–Frenkel correspondence, we shall show that its Drinfeld current algebra
is related to the current algebra generalizing the screening currents forq-Virasoro algebra.
Moreover, algebraAq,p;π̂ (ĝl2) is an algebraic structure underlying the elliptic solution to
the star–triangle relation inA(1)1 -face type model including ABF [19] and its fused version
[26, 27, 29].

3.1. The R-matrix

Define a dynamical ellipticR-matrix (R-matrix for A(1)1 face model [28, 30])

RF (v, π̂) ≡ RF (v, π̂, r) =


a

b c

d e

a

 (16)

whereπ̂ is the dynamical variable corresponding to the height for the face-type model and
indulge in some relations with algebraAq,p;π̂ (ĝl2) (see equations (27) (28)). The matrix
elements of theR-matrix is defined by

a(v, π̂) = x 1−r
r
v g1(v)

g1(−v) g1(v) = {x
2+2v}{x2+2r+2v}
{x4+2v}{x2r+2v} {z} = (z; x2r , x4) (17)

b(v, π̂)

a(v, π̂)
= [v]r [π̂ − 1]r

[v + 1]r [π̂ ]r

c(v, π̂)

a(v, π̂)
= [v + π̂ ]r [1]r

[v + 1]r [π̂ ]r
(18)

d(v, π̂)

a(v, π̂)
= [π̂ − v]r [1]r

[v + 1]r [π̂ ]r

e(v, π̂)

a(v, π̂)
= [v]r [1+ π̂ ]r

[v + 1]r [π̂ ]r
. (19)

One can see thata(v, π̂) does not depend on the dynamical variableπ̂ . Moreover, let us
introduce twoR-matricesR±F which coincide withRF in equation (16) up to scalar factors
independent of the dynamical variable

R±F (v, π̂) ≡ R±F (v, π̂, r) = τ±(v)RF (v, π̂) τ±(v) = τ(−v ± 1
2)

τ (v) = x−v (x
1+2v; x4)(x3−2v; x4)

(x3+2v; x4)(x1−2v; x4)

(20)

whereτ±(v) are the same as that of Fodaet al [10]. R±F are regarded as linear operators
on V ⊗ V , with V = span{e±}. Let h be the diagonal 2× 2 matrix Diag(1,−1) such
that he± = ±e±. The dynamicalR-matricesR±F (v, π̂) satisfy the dynamical Yang–Batxer
equation (i.e. the modified Yang–Baxter equation [22]) inV ⊗ V ⊗ V
R±F12(v1− v2, π̂ − 2h(3))R±F13(v1− v3, π̂)R

±
F23(v2− v3, π̂ − 2h(1))

= R±F23(v2− v3, π̂)R
±
F13(v1− v3, π̂ − 2h(2))R±F12(v1− v2, π̂). (21)

Here we choose the same notation as Enriquezet al [22]: R±F12(v, π̂ − 2h(3)) means that if
a⊗b⊗eµ ∈ V⊗V⊗V,µ ∈ ±, thenR±F12(v, π̂−2h(3))a⊗b⊗eµ = R±F12(v, π̂−2µ)a⊗b⊗eµ,
and the other symbols have a similar meaning. Besides the dynamical Yang–Baxter equation
equation (21), theR-matrices have the following properties:

unitarity R±F12(v, π̂)R
∓
F21(−v, π̂) = id (22)

crossing relationsR±F (−1− v, π̂)µ′ν ′µν = µµ′R∓F (v, π̂ − µ′)−νµ
′

−ν ′µ
[π̂ − µ′]r

[π̂ ]r
. (23a)
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Moreover, theR-matricesR±F (v, π̂) have the following property

R+F (v + r, π̂) = R−F (v, π̂). (23b)

Here, ifR±F12(v, π̂) =
∑
ai ⊗ bi , with ai, bi ∈ End(V ), thenR±F21(v, π̂) =

∑
bi ⊗ ai .

3.2. The algebraAq,p;π̂ (ĝl2)

Let us proceed to the definition of the elliptic algebraAq,p;π̂ (ĝl2). ConsiderL±-operators

L±(v, π̂) =
(
L±++ L±+−
L±−+ L±−−

)
whose matrix elements are the generators of the elliptic algebraAq,p;π̂ (ĝl2) given by the
following commutation relations:

R+F
(
v1− v2+ c

2
, π̂
)
L+1 (v1, π̂)L

−
2 (v2, π̂) = L−2 (v2, π̂)L

+
1 (v1, π̂)R

∗+
F

(
v1− v2− c

2
, π̂
)
(24)

R−F
(
v1− v2− c

2
, π̂
)
L−1 (v1, π̂)L

+
2 (v2, π̂) = L+2 (v2, π̂)L

−
1 (v1, π̂)R

∗−
F

(
v1− v2+ c

2
, π̂
)
(25)

R±F (v1− v2, π̂)L
±
1 (v1, π̂)L

±
2 (v2, π̂) = L±2 (v2, π̂)L

±
1 (v1, π̂)R

∗±
F (v1− v2, π̂) (26a)

L−(v, π̂) = L+(v − c
2
+ r, π̂) (26b)

whereL±1 (v, π̂) = L±(v, π̂)⊗id, L±2 (v, π̂) = id⊗L±(v, π̂), R∗±F (v, π̂) = R±F (v,−π̂ , r−c)
and c is the centre of the algebra (its value on some representation of the algebra is usually
called the level of the algebra). Moreover, theL±-operators are related with the dynamical
variableπ̂ :

π̂L(±)µν (v, π̂) = L(±)µν (v, π̂)(π̂ + (νr − (r − c)µ)).
Hence, the dynamicalR-matrices have the following properties

RεF (v, π̂)L
(ε′)µ
ν (v, π̂) = L(ε′)µν (v, π̂)RεF (v, π̂ + µc) (27)

R∗εF (v, π̂)L
(ε′)µ
ν (v, π̂) = L(ε′)µν (v, π̂)R∗εF (v, π̂ + νc) (28)

whereε, ε′ ∈ ± and the following property

[v + t ]t = −[v]

is used.

Remark. The relation equation (25) is the direct result of equations (22) and (24). The
analytical continuation relation (26b) follows from equation (23b) with τ± independent
of r.

Let

L±(v, π̂) =
(

1 0
E±(v) 1

)(
K±1 (v) 0

K±2 (v)

)(
1 F±(v)
0 1

)
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be the Gauss decomposition ofL±-operators. For convenience, we introduce the following
symbols

R±F (v, π̂) =


a±(v)

b±(v) c±(v)
d±(v) e±(v)

a±(v)



R∗±F (v, π̂) =


a′±(v)

b′±(v) c′±(v)
d ′±(v) e′±(v)

a′±(v)

 .

Remark. The elementsa±(v) and a′±(v) do not depend on the dynamical variable, and
commute with the Gauss components ofL±-operators.

Define the total currentsE(v) and F(v) by using the corresponding Ding–Frenkel
correspondence

E(v) = E+(v)− E−
(
v + c

2

)
F(v) = F+

(
v + c

2

)
− F−(v). (29)

We then have the following proposition.

Proposition 1.The total currentsE(v), F (v) andK±i (v) (i = 1, 2) satisfy the following
commutation relations

a±(v1− v2)K
±
i (v1)K

±
i (v2) = K±i (v2)K

±
i (v1)a

′±(v1− v2) (30a)

b±(v1− v2)K
±
1 (v1)K

±
2 (v2) = K±2 (v2)K

±
1 (v1)b

′±(v1− v2) (30b)

a+
(
v1− v2+ c

2

)
K+i (v1)K

−
i (v2) = K−i (v2)K

+
i (v1)a

′±
(
v1− v2− c

2

)
(30c)

b+
(
v1− v2+ c

2

)
K+1 (v1)K

−
2 (v2) = K−2 (v2)K

+
1 (v1)b

′+
(
v1− v2− c

2

)
(30d)

b−
(
v1− v2− c

2

)
K−1 (v1)K

+
2 (v2) = K+2 (v2)K

−
1 (v1)b

′−
(
v1− v2+ c

2

)
(30e)

K+1 (v1)E(v2)K
+
1 (v1)

−1 = a+(v1− v2)

b+(v1− v2)
E(v2) (31a)

K+2 (v2)E(v1)K
+
2 (v2)

−1 = E(v1)
a+(v1− v2)

b+(v1− v2)
(31b)

K−1 (v1)E(v2)K
−
1 (v1)

−1 = a+(v1− v2− c
2)

b+(v1− v2− c
2)
E(v2) (31c)

K−2 (v2)E(v1)K
−
2 (v2)

−1 = E(v1)
a+(v1− v2+ c

2)

b+(v1− v2+ c
2)

(31d)

K+1 (v1)
−1F(v2)K

+
1 (v1) = F(v2)

a′+(v1− v2− c
2)

b′+(v1− v2− c
2)

(32a)

K+2 (v2)
−1F(v1)K

+
2 (v2) =

a′+(v1− v2+ c
2)

b′+(v1− v2+ c
2)
F (v1) (32b)

K−1 (v1)
−1F(v2)K

−
1 (v1) = F(v2)

a′+(v1− v2)

b′+(v1− v2)
(32c)
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K−2 (v2)
−1F(v1)K

−
2 (v2) = a′+(v1− v2)

b′+(v1− v2)
F (v1) (32d)

E(v1)
a±(v1− v2)

b±(v1− v2)
E(v2) = E(v2)

a±(v2− v1)

b±(v2− v1)
E(v1) (33a)

F(v1)
a′±(v2− v1)

b′±(v2− v1)
F (v2) = F(v2)

a′±(v1− v2)

b′±(v1− v2)
F (v1) (33b)

[E(v1), F (v2)] = 1

x − x−1

{
δ
(
v2− v1− c

2

)
K−2

(
v1+ c

2

) [π̂ ]r−c[1]r−c
θ ′r−c[π̂ − 1]r−c

K−1
(
v1+ c

2

)−1

− δ
(
v2− v1+ c

2

)
K+2 (v1)

[π̂ ]r−c[1]r−c
θ ′r−c[π̂ − 1]r−c

K+1 (v1)
−1

}
(34)

whereK−i (v) = K+i (v − c
2 + r) andθ ′t = (x − x−1) ∂

∂v
[v]t |v=0.

The proof of these relations is in appendix B.

Remark.The elliptic algebraUq,p(ŝl2) proposed by Konno [27], has differentK(v) from our
(K±i (v) also in [37]), in which the commutation relations betweenK(v) andE(v), F (v) do
not depend on the dynamical variable. However, they share the same subalgebra generated
by H±(v),E(v) andF(v) (see below).

Set

H+(v) = K−2
(
v + c

4

) [π̂ ]r−c[1]r−c
θ ′r−c[π̂ − 1]r−c

K−1
(
v + c

4

)−1
(35)

H−(v) = K+2
(
v + c

4

) [π̂ ]r−c[1]r−c
θ ′r−c[π̂ − 1]r−c

K+1
(
v + c

4

)−1
. (36)

Also in the case ofq-affine algebra [7] and Yangian double algebra [8, 9], we can obtain
the corresponding Drinfeld current algebra ofAq,p;π̂ (ĝl2) which is the subalgebra of the
elliptic algebraAq,p;π̂ (ĝl2) and generated byE(v), F (v),H±(v). We then find the following
proposition.

Proposition 2.The ellipitc (Drinfeld) current algebra of algebraAq,p;π̂ (ĝl2) is generated by
E(v), F (v),H±(v) with the following algebraic relations

E(v1)E(v2) = [v1− v2− 1]r
[v1− v2+ 1]r

E(v2)E(v1) (37)

F(v1)F (v2) = [v1− v2+ 1]r−c
[v1− v2− 1]r−c

F (v2)F (v1) (38)

[E(v1), F (v2)] = 1

x − x−1

{
δ
(
v1− v2+ c

2

)
H+

(
v1+ c

4

)
− δ

(
v1− v2− c

2

)
H−

(
v1− c

4

)}
(39)

H±(v1)E(v2) =
[v1− v2− 1∓ c

4]r
[v1− v2+ 1∓ c

4]r
E(v2)H

±(v1) (40)

H±(v1)F (v2) =
[v1− v2+ 1± c

4]r−c
[v1− v2− 1± c

4]r−c
F (v2)H

±(v1) (41)

H±(v1)H
±(v2) = [v1− v2+ 1]r−c[v1− v2− 1]r

[v1− v2− 1]r−c[v1− v2+ 1]r
H±(v2)H

±(v1) (42)
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H+(v1)H
−(v2) =

[v1− v2+ 1+ c
2]r−c[v1− v2− 1− c

2]r
[v1− v2− 1+ c

2]r−c[v1− v2+ 1− c
2]r
H−(v2)H

+(v1) (43)

and

H−(v) = H+
(
v + c

2
− r

)
.

The proof of these formulae is in appendix C.

Remark.
(1) The deformed parameters areq = x and p = x2r (cf [10]). Moreover, the

constructure coefficients in equations (37)–(43) do not depend on the dynamical variableπ̂ .
(2) Whenr −→ +∞, the limit current algebra is the algebraUq(ŝl2) [32].

One can see that ifc = 1 (i.e. level one), the current algebra of algebraAq,p;π̂ (ĝl2)
are the algebra of screening currents forq-Virasoro algebra (cf equations (9)–(15)) which
play the role of symmetry algebra in the ABF model [12, 17]. For the general levelk (k ∈
integer), the algebraAq,p;π̂ (ĝl2) would correspond to thek-fusion ABF model [26, 27, 29]
and in this case, someq-deformation of the extended Virasoro algebra [38–40] would exist
in such a way that their screening currents satisfy the current algebra of algebraAq,p;π̂ (ĝl2).
So, this elliptic algebra would play an important role in the studies ofA

(1)
1 -type face models

as that of the algebraAq,p(ĝl2) in the eight-vertex model [10].

3.3. The algebraAq,p;π̂ (ĝl2) as the dynamically twisted algebraAq,p(ĝl2)

It is well known that there exists a face-vertex correspondence betweenA
(1)
1 face model

and eight-vertex model whenr is a generic one [1, 26, 28, 29].This would result in
the ‘equivalence’ between the underlying algebraAq,p;π̂ (ĝl2) andAq,p(ŝl2)—the algebra
Aq,p;π̂ (ĝl2) is the dynamcially twisted algebra ofAq,p(ĝl2). We are informed that Jimbo
had some similar ideal to use the face-vertex correspondence at the level of vertex operators.
In this section, we restrict our attention to the case ofr being a generic one.

Let εµ (µ ∈ ±) be the orthonormal basis inR2, which are supplied with the inner
product〈εµ, εν〉 = δµν . Set

εµ = εµ − ε ε = ε− + ε+
2

.

Then, define the intertwiners [28, 33]

ϕ
(m)

k̂,µ
(v) = θ(m)

(
v + 〈k̂, εµ〉

r
,− 1

rw

)

ϕ
′(m)
µ,l̂
(v) = θ(m)

(
v + 〈l̂, εµ〉
r − c ,− 1

(r − c)w

)
〈k̂, εµ〉 ≡ µk̂ 〈l̂, εµ〉 ≡ µl̂
π̂ ≡ (r − c)k̂ − r l̂.

(43a)

Here, we remark that the decomposition of equation (43a) can be defined only for generic
r [33] and

k̂L(±)µν(v, π̂) = L(±)µν(v, π̂)(k̂ + µc) l̂L(±)µν(v, π̂) = L(±)µν(v, π̂)(l̂ + νc).
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The face-vertex correspondence relations read as

Rijmn(v1− v2)ϕ
(m)

k̂,ν
(v1)ϕ

(n)

k̂−εν ,µ(v2) =
∑
µ′ν ′

R
νµ

Fν ′µ′(v1− v2, π̂)ϕ
(i)

k̂−εµ′ ,ν ′
(v1)ϕ

(j)

k̂,µ′
(v2)

R∗ijmn(v1− v2)ϕ
′(m)
ν,l̂+εµ(v1)ϕ

′(n)
µ,l̂
(v2) =

∑
µν

R
∗νµ
Fν ′µ′(v1− v2, π̂)ϕ

′(i)
ν ′,l̂
(v1)ϕ

′(j)
µ′,l̂+εν′

(v2)

where the nondynamicalR-matricesR andR∗ are the same as that of Fodaet al [10].
Moreover, we can introduce intertwinersϕk̂,µ andϕ′

µ,l̂
satisfying relations [28]∑

m

ϕ
(m)

µ,k̂
ϕ
(m)

ν,k̂
= δµ,ν

∑
µ

ϕ
(i)

µ,k̂
ϕ
(j)

µ,k̂
= δij∑

m

ϕ
′(m)
l̂,µ
ϕ
′(m)
l̂,ν
= δµ,ν

∑
µ

ϕ
′(i)
l̂,µ
ϕ
′(j)
l̂,µ
= δij .

We then have the twisted relations between theR-matrix of eight-vertex model and the
R-matrix of A(1)1 face model

R
νµ

Fν ′µ′(v1− v2, π̂) =
∑
ijmn

ϕ
(j)

k̂,µ′
(v2)ϕ

(i)

k̂−εµ′ ,ν ′
(v1)R

ij
mn(v1− v2)ϕ

(m)

k̂,ν
(v1)ϕ

(n)

k̂−εν ,µ(v2) (44)

R
∗νµ
Fν ′µ′(v1− v2, π̂) =

∑
ijmn

ϕ
′(j)
µ′,l̂+εν′

(v2)ϕ
′(i)
ν ′,l̂
(v1)R

∗ij
mn(v1− v2)ϕ

′(m)
ν,l̂+εµ(v1)ϕ

′(n)
µ,l̂
(v2). (45)

Moreover, we can construct the twisted relations between the correspondingL±-operators

L±νµ (v, π̂) =
∑
mm′

ϕ
(m′)
k̂,ν
(v)L±m

′
m (v)ϕ

′(m)
µ,l̂
(v)

L±m
′

m (v) =
∑
µν

ϕ
(m′)
k̂,ν
(v)L±νµ (v, π̂)ϕ

′(m)
µ,l̂
(v).

(46)

We then have the following proposition.

Proposition 3.TheL±(v) operators given by the twisted relations equation (46) satisfying
the commutation relations of the algebraAq,p(ĝl2) [10]

R+
(
v1− v2+ c

2

)
L+1 (v1)L

−
2 (v2) = L−2 (v2)L

+
1 (v1)R

∗+
(
v1− v2− c

2

)
(47)

R±(v1− v2)L
±
1 (v1)L

±
2 (v2) = L±2 (v2)L

±
1 (v1)R

∗±(v1− v2) (48)

where ther-matricesR±(v), R∗±(v) are the same as that of Fodaet al

R±(v) ≡ τ±(v)R(v) R∗±(v) = R∗±(v)|r−→r−c.

4. The type I and type II vertex and Miki’s construction

This section is devoted to the realization of infinite-dimensional representations of the
algebraAq,p;π̂ (ĝl2) at level one by theq-primary fields ofq-Virasoro algebra.

4.1. The type I and type II vertex operators

The method of bosonization provides a powerful method to study the solvable lattice model
in both the vertex-type model [32] and the face-type model [17, 30, 35]. In this section, we
give the bosonization of the type I [17] and type II [35] vertex operator in the ABF model
by one free field.
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The type I vertex operator corresponds to the half-column transfer matrix of the model,
and the type II vertex operator is expected to create the eigenstates of the transfer matrix.
We denote the two types of vertex operator as
• vertex operator of type I :8i(v)

• vertex operator of type II:9∗i (v).
These vertex operators realize the Faddeev–Zamolodchikov (ZF) algebra with a

dynamicalR-matrix as its structure coefficients

8ν(v2)8µ(v1) = Rµ
′ν ′

Fµν(v1− v2, π̂)8µ′(v1)8ν ′(v2) (49)

9∗µ(v1)9
∗
ν (v2) = −R∗µνFµ′ν ′(v1− v2, π̂)9

∗
ν ′(v2)9

∗
µ′(v1) (50)

8ν(v1)9
∗
µ(v2) = τ(v1− v2)9

∗
µ(v2)8ν(v1). (51)

Let us introduce the other basic operators

η1(v) = e−i
√

r−1
r
(Q−i2v ln xP ) : e−

∑
m6=0

βm
m
x−2vm

:

η′1(v) = ei
√

r
r−1 (Q−i2v ln xP ) : e

∑
m6=0

β′m
m
x−2vm

:

ξ(v) = ei
√

2(r−1)
r

(Q−i2v ln xP ) : e
∑

m6=0
xm+x−m

m
βmx

−2vm
:

ξ ′(v) = e−i
√

2r
r−1 (Q−i2v ln xP ) : e−

∑
m6=0

xm+x−m
m

β ′mx
−2vm

:

where theq-deformed bosonic oscillatorsβm, P,Q are defined in equation (3). Then, the
bosonization of vertex operators is given by [17, 30, 33]

8+(v) = η1(v) 8−(v) =
∮
C

d(x2v1)

2π ix2v1
η1(v)ξ(v1)f (v1− v, π̂) (52)

9+(v) = η′1(v) 9−(v) =
∮
C ′

d(x2v1)

2π ix2v1
η′1(v)ξ

′(v1)f
′(v1− v, π̂) (53)

where the integration contourC is a simple closed curve around the origin satisfying
|xx2v| < |x2v1| < |x−1x2v|; C ′ is chosen in such a way that the polesx2v−1+2n(r−1) (06 n)
are inside and the polesx2v+1−2n(r−1) (06 n) are outside, and

f (v,w) = [v + 1
2 − w]r

[v − 1
2]r

f ′(v,w) = [v − 1
2 + w]r−1

[v + 1
2]r−1

.

Set

9∗µ(v) = 9−µ(v)
1

[π̂ ]r−1
.

From the normal order relations given in appendix A, one can check that the bosonic
realization for8i and9∗ in equations (52) and (53) satisfy the ZF algebra in equations (49)–
(51) [30, 33].

4.2. The realization of algebraAq,p;π̂ (ĝl2) at level one by Miki’s construction

Let us introduce Miki’s construction [34]

L+µν (v, π̂) = 8µ(v)9
∗
ν (v − 1

2) (54)

L−µν (v, π̂) = 8µ(v − 1
2)9

∗
ν (v). (55)

Using the relations of the ZF algebra in equations (49)–(51), one can prove that the
L±-operators constructed above satisfy the definition of the elliptic quantum algebra of
equations (24)–(26) withc = 1. Moreover, we have the following proposition.
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Proposition 4.The L±-operators and two-type vertex operators satisfy the folllowing
relations

R+F (v1− v2, π̂)L
+
1 (v1, π̂)82(v2) = 82(v2)L

+
1 (v1, π̂) (56)

R−F (v1− v2− 1
2, π̂)L

−
1 (v1, π̂)82(v2) = 82(v2)L

−
1 (v1, π̂) (57)

L+1 (v1, π̂)9
∗
2(v2) = 9∗2(v2)L

+
1 (v1, π̂)R

∗+
F (v1− v2− 1

2, π̂) (58)

L−1 (v1, π̂)9
∗
2(v2) = 9∗2(v2)L

−
1 (v1, π̂)R

∗+
F (v1− v2, π̂). (59)

The proof is direct by using Miki’s construction ofL±-operators and the ZF algebra of
equations (49)–(51).

From proposition 4, one can see that the vertex operators of the ABF model are the
intertwining operators of the elliptic algebraAq,p;π̂ (ĝl2) at level one, which satisfy some
generalized relations ofq-affine algebra and its intertwining operators [31].

5. The scaling limit algebraAh̄,η;π̂(ĝl2)

Another deformed Virasoro algbera—¯h-Virasoro algebra can be considered as symmetries
of the massive integrable field theories [14], and at the semiclassical level corresponds to
the centre of the Yangian double with centreDYh̄(ĝl2) at the critical level [18]. In another
way, h̄-Virasoro algbera can be considered as the scaling limit of theq-Virasoro algebra
[14]

x2v = p− iβ
h̄ q = p− 1

η p −→ 1.

Moreover, the screening currents of ¯h-Virasoro algebra satisfies a closed algebra relation,
which can also be considered as the scaling limit of that ofq-Virasoro algbera in
equations (9)–(15) [14]. Therefore, we can construct a generalizing algebraAh̄,η;π̂ (ĝl2)
as the scaling limit of algebraAq,p;π̂ (ĝl2), which is expected to be the symmetric algebra
of the k-fused restricted sine-Gordon model and its (Drinfeld) current algebra would be the
algebra of screening currents of some ¯h-deformed extended Virasoro algbera. Similarly,
the algebraAh̄,η;π̂ (ĝl2) can be formulated in the dynamicalRLL = LLR∗ form with the
dynamicalR-matrix being the trigonometric solution to the dynamical Yang–Baxter equation
[14].

In this section, we restrict ourselves to the trigonometric dynamicalR-matrix (or the
scaling limit of theR-matrix in equations (16) and (20)). To avoid confusion with that in
the former section, we choose the same symbols as in section 3.1

RF (v, π̂) ≡ RF (v, π̂, η) =


a

b c

d e

a

 (60)

and

a(β, π̂) = κ(β) = exp

{∫ ∞
0

2 shh̄t2 sh h̄t
2η sh iβt

shh̄t sh (1+η)h̄t2η

dt

t

}
(61)

b(β, π̂)

a(β, π̂)
= sinπη( iβ

h̄
) sinπη(π̂ − 1)

sinπη(π̂) sinπη( iβ
h̄
+ 1)

c(β, π̂)

a(β, π̂)
= sinπη sinπη( iβ

h̄
+ π̂)

sinπη(π̂) sinπη( iβ
h̄
+ 1)

(62)

d(β, π̂)

a(β, π̂)
= sinπη sinπη(− iβ

h̄
+ π̂)

sinπη(π̂) sinπη( iβ
h̄
+ 1)

e(β, π̂)

a(β, π̂)
= sinπη( iβ

h̄
) sinπη(π̂ + 1)

sinπη(π̂) sinπη( iβ
h̄
+ 1)

(63)
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R±F (β, π̂) = τ±(β)RF (β, π̂) τ+(β) = ctg

(
iπβ

2h̄

)
τ−(β) = − tg

(
iπβ

2h̄

)
.

Define

R∗±F (β, π̂) ≡ R±F (β,−π̂)|η−→η′
1

η′
= 1

η
− c.

The algebraAh̄,η;π̂ (ĝl2) is generated by the matrix elements of oneL±-operator which
satisfy the following relations

R+F

(
β1− β2− ih̄c

2
, π̂

)
L+1 (β1, π̂)L

−
2 (β2, π̂)

= L−2 (β2, π̂)L
+
1 (β1, π̂)R

∗+
F

(
β1− β2+ ih̄c

2
, π̂

)
(64)

R−F

(
β1− β2+ ih̄c

2
, π̂

)
L−1 (β1, π̂)L

+
2 (β2, π̂)

= L+2 (β2, π̂)L
−
1 (β1, π̂)R

∗−
F

(
β1− β2− ih̄c

2
, π̂

)
(65)

R±F (β1− β2, π̂)L
±
1 (β1, π̂)L

±
2 (β2, π̂) = L±2 (β2, π̂)L

±
1 (β1, π̂)R

∗±
F (β1− β2, π̂) (66)

π̂L(±)µν (β, π̂) = L(±)µν (β, π̂)

(
π̂ +

(
ν

1

η
− 1

η′
µ

))
. (67)

Let

L±(β, π̂) =
(

1 0
E±(β) 1

)(
K±1 (β) 0

K±2 (β)

)(
1 F±(β)
0 1

)
be the Gauss decomposition of theL±-operators. For convenience, we also introduce the
following symbols

R±F (β, π̂) =


a±(β)

b±(β) c±(β)
d±(β) e±(β)

a±(β)



R∗±F (β, π̂) =


a′±(β)

b′±(β) c′±(β)
d ′±(β) e′±(β)

a′±(β)

 .
Define the total currentsE(β) andF(β) by the corresponding Ding–Frenkel correspondence

E(β) = E+(β)− E−
(
β − ih̄c

2

)
F(β) = F+

(
β − ih̄c

2

)
− F−(β). (68)

Substituting the Gauss decomposition of theL±-operator, we can obtain similar
commutation relations bewteenE(β), F(β) andK±i (β) as those in proposition 1, where
the matrix elements of theR-matrix are in equations (60)–(63).

The algebraAh̄,η(ĝl2) as the scaling limit of the elliptic algebraAq,p(ĝl2) was studied by
Khoroshkinet al through the method of Gauss decomposition [8]. Commutation relations
of E(β),F(β) andK±i (β) were obtained, which are quite different from ours. This is due to
the fact that they chose a nondynamical ‘RLL = LLR∗’ formalism, and consequently, the
commutation relations obtained do not depend on the dynamical variable. If we introduce
H±(β) to equations (69) and (70), which are quite different from that of Khoroshkinet al
algebraAh̄,η;π̂ (ĝl2) and algebraAh̄,η(ĝl2) share the same subalgebra—the (Drinfeld) current
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algebra of each one is generated byE(β), F (β),H±(β). Although they share the same
subalgebraic commutation relations, they relate to differentE,F,K±i (or different algebra)
and consequently are associated with different vertex operators [18, 14] which have different
relations to equations (56)–(59). Moreover, the two algebras are related to the different
models (face-type model for the dynamical algebra and vertex model for the nondynamical
algebra) especially for the rationalη case.

Setting

H+(β) = K−2
(
β − ih̄c

4

)
sinπη′π̂ sinπη′

πη′ sinπη′(π̂ − 1)
K−1

(
β − ih̄c

4

)−1

(69)

H−(β) = K+2
(
β − ih̄c

4

)
sinπη′π̂ sinπη′

πη′ sinπη′(π̂ − 1)
K+1

(
β − ih̄c

4

)−1

(70)

we have the current algebra of algebraAh̄,η;π̂ (ĝl2) generated byE(β), F (β) andH±(β)
which is the scaling limit of those of the elliptic algebraAq,p;π̂ (ĝl2).

Proposition 5.The current algebra of algebraAh̄,η;π̂ (ĝl2) is generated byE(β), F (β),
H±(β) and satisfies the following relations

E(β1)E(β2) =
sin iπη

h̄
(β1− β2− ih̄)

sin iπη
h̄
(β1− β2+ ih̄)

E(β2)E(β1) (71)

F(β1)F (β2) =
sin iπη′

h̄
(β1− β2+ ih̄)

sin iπη′
h̄
(β1− β2− ih̄)

F (β2)F (β1) (72)

[E(β1), F (β2)] = h̄
{
δ

(
β1− β2− ih̄c

2

)
H+

(
β1− ih̄c

4

)
− δ

(
β1− β2+ ih̄c

2

)
H−

(
β1+ ih̄c

4

)}
(73)

H±(β1)E(β2) =
sin iπη

h̄
(β1− β2− ih̄∓ ih̄c

4 )

sin iπη
h̄
(β1− β2+ ih̄∓ ih̄c

4 )
E(β2)H

±(β1) (74)

H±(β1)F (β2) =
sin iπη′

h̄
(β1− β2+ ih̄± ih̄c

4 )

sin iπη′
h̄
(β1− β2− ih̄± ih̄c

4 )
F (β2)H

±(β1) (75)

H±(β1)H
±(β2) =

sin iπη′
h̄
(β1− β2+ ih̄) sin iπη

h̄
(β1− β2− ih̄)

sin iπη′
h̄
(β1− β2− ih̄) sin iπη

h̄
(β1− β2+ ih̄)

H±(β2)H
±(β1) (76)

H+(β1)H
−(β2) =

sin iπη′
h̄
(β1− β2+ ih̄− ih̄c

2 ) sin iπη
h̄
(β1− β2− ih̄+ ih̄c

2 )

sin iπη′
h̄
(β1− β2− ih̄− ih̄c

2 ) sin iπη
h̄
(β1− β2+ ih̄+ ih̄c

2 )
H−(β2)H

+(β1).

(77)

It can be seen that whenc = 1 (i.e. at level one), the current algebra of algebraAh̄,η;π̂ (ĝl2)
is the algebra of the screening currents for ¯h-Virasoro algebra [14]. For a higher level,
it would be the algebra of screening currents for ¯h-deformed extended Virasoro algebra.
Moreover, there exist the following relations between the algebraAh̄,η;π̂ (ĝl2) andAh̄,η(ĝl2)
[8], and between the algebraAq,p;π̂ (ĝl2) andAq,p(ĝl2) [10] for the genericr andη case

Aq,p;π̂ (ĝl2)
scaling limit−→ Ah̄,η;π̂ (ĝl2)

l twisted l twisted

Aq,p(ĝl2)
scaling limit−→ Ah̄,η(ĝl2).
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6. Discussion

In this paper, we propose an elliptic algebraAq,p;π̂ (ĝl2) based on a dynamical relations
RLL = LLR∗, where the dynamicalR-matrix is of theA(1)1 -type face model. The
corresponding (Drinfeld) current algebra is the current algebra generalizing the screening
currents forq-Viarsoro algebra and is a dynamical twisted algebra ofAq,p(ĝl2), which can
be considered as the results of the correspondence between theA

(1)
1 face model and the

eight-vertex model with genericr. Moreover, theq-primary fields ofq-Virasoro8µ and
9∗µ which are also known as the vertex operators forA

(1)
1 face model, are the intertwining

operators of the elliptic algebraAq,p;π̂ (ĝl2) at level one.
It is very interesting to investigate the quasi-Hopf structure of the algebraAq,p;π̂ (ĝl2).

Recent work of Jimboet al [45] shows that the algebraAq,p;π̂ (ĝl2) (i.e. the algebraBq,λ(ĝl2)
in [45]) can be obtained by twisting the standard quantum affine algebraUq(ĝl2) [45, 46].
This means that the algebraAq,p;π̂ (ĝl2) could be endowed with quasi-Hopf structure. It also
becomes clear that the evaluation representation of the algebra (or level zero representation)
is the representation of Felderet al [48].

The work of Jimboet al [47] shows that the ‘half-currents’E±(v), F±(v) can be
reconstructed as certain contour integrals of the ‘total currents’E(v), F (v) involving some
theta-functional factor depending upon the zero-mode (a similar construction was also
proposed by Enriquezet al [22]). This gives one some hint as to why the Lukyanov’s
screening operator [17, 20, 21] will include some theta-functional factor.

In this paper, we only consider the algebraAq,p;π̂ (ĝl2), but not the algebraAq,p;π̂ (ŝl2).
Traditionally, one can impose some quantum determinant condition on the case ofgl2 and
obtain the corresponding algebra of thesl2 case. Unfortunately, we still cannot find the
corresponding quantum determinant for the algebraAq,p;π̂ (ĝl2). However, the subalgebra
generated byE(v), F (v),H±(v) (in proposition 2) is the algebraAq,p;π̂ (ŝl2). So, the vertex
operators in section 4 are actually the vertex operators of the algebraAq,p;π̂ (ŝl2).

It is very interesting to extend the present formulationRLL = LLR∗ to the case of
A
(1)
n−1. The corresponding elliptic algebra isAq,p;π̂ (ĝln). The corresponding (Drinfeld)

current algebra of algebraAq,p;π̂ (ĝln) would be the current algebra generalizing, the
screening currents forq-deformedWn algebra, which is generated byEj(v), Fj (v) and
H±j (v) (j = 1, . . . , n− 1) with the following relations

Ei(v1)Ej (v2) = (−1)Aij
[v1− v2− Aij

2 ]r

[v1− v2+ Aij
2 ]r

Ej (v2)Ei(v1)

Fi(v1)Fj (v2) = (−1)Aij
[v1− v2+ Aij

2 ]r−c
[v1− v2− Aij

2 ]r−c
Fj (v2)Fi(v1)

[Ej(v1), Fj (v2)] = 1

x − x−1

{
δ
(
v1− v2+ c

2

)
H+j

(
v1+ c

4

)
− δ

(
v1− v2− c

2

)
H−j

(
v1− c

4

)}
Ej(v1)Fj+1(v2) = −Fj+1(v2)Ej (v1) Fj (v1)Ej+1(v2) = −Ej+1(v2)Fj (v1)

[Ej(v1), Fl(v2)] = 0 |j − l| > 1

H±i (v1)Ej (v2) =
[v1− v2− Aij

2 ∓ c
4]r

[v1− v2+ Aij
2 ∓ c

4]r
Ej (v2)H

±
j (v1)
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H±i (v1)Fj (v2) =
[v1− v2+ Aij

2 ± c
4]r−c

[v1− v2− Aij
2 ± c

4]r−c
Fj (v2)H

±
j (v1)

H±i (v1)H
±
j (v2) =

[v1− v2− Aij
2 ]r [v1− v2+ Aij

2 ]r−c
[v1− v2+ Aij

2 ]r [v1− v2− Aij
2 ]r−c

H±j (v2)H
±
i (v1)

H±i (v1)H
∓
j (v2) =

[v1− v2− Aij
2 ∓ c

2]r [v1− v2+ Aij
2 ± c

2]r−c
[v1− v2+ Aij

2 ∓ c
2]r [v1− v2− Aij

2 ± c
2]r−c

H∓j (v2)H
±
i (v1)

whereH−j (v) = H+j (v+ c
2−r) and the matrixAij is the Cartan matrix forA(1)n−1 Lie algebra

Aij = 2δij − δi+1,j − δi−1,j .

The above algberaic relations could be derived by the Gauss decomposition of theL±-
operators corresponding to the dynamicalR-matrix of A(1)n−1 face model. We will present
the results in a further paper.
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Appendix A. The normal order relation for basic operators

The normal order relations for the screening currentsE(v) andF(v) of q-deformed Virasoro
algebra are

E(v1)E(v2) = x
4(r−1)v1

r t (v2− v1) : E(v1)E(v2) :

F(v1)F (v2) = x
4rv1
r−1 t ′(v2− v1) : F(v1)F (v2) :

E(v1)F (v2) = x−4v1

(1− xx2(v2−v1))(1− x−1x2(v2−v1))
: E(v1)F (v2) :

F(v2)E(v1) = x−4v2

(1− xx2(v1−v2))(1− x−1x2(v1−v2))
: E(v1)F (v2) : .
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The normal order relations for the basic operators in type I and type II vertex operators read
as

η1(v1)η1(v2) = x
(r−1)v1

r g1(v2− v1) : η1(v1)η1(v2) :

η1(v1)ξ(v2) = x
2(1−r)v1

r s(v2− v1) : η1(v1)ξ(v2) :

ξ(v2)η1(v1) = x
2(1−r)v2

r s(v1− v2) : η1(v1)ξ(v2) :

ξ(v1)ξ(v2) = x
4(r−1)v1

r t (v2− v1) : ξ(v1)ξ(v2) :

η′1(v1)η
′
1(v2) = x

rv1
r−1g′1(v2− v1) : η′1(v1)η

′
1(v2) :

η′1(v1)ξ
′(v2) = x

−2rv1
r−1 s ′(v2− v1) : η′1(v1)ξ

′(v2) :

ξ ′(v2)η
′
1(v1) = x

−2rv2
r−1 s ′(v1− v2) : η′1(v1)ξ

′(v2) :

ξ ′(v1)ξ
′(v2) = x

4rv1
r−1 t ′(v2− v1) : ξ ′(v1)ξ

′(v2) :

η1(v1)ξ
′(v2) = (x2v1 − x2v2) : η1(v1)ξ

′(v2) :

ξ ′(v2)η1(v1) = (x2v2 − x2v1) : η1(v1)ξ
′(v2) :

η′1(v1)ξ(v2) = (x2v1 − x2v2) : η′1(v1)ξ(v2) :

ξ(v2)η
′
1(v1) = (x2v2 − x2v1) : η′1(v1)ξ(v2) :

ξ(v1)ξ
′(v2) = x−4v1

(1− xx2(v2−v1))(1− x−1x2(v2−v1))
: ξ(v1)ξ

′(v2) :

ξ ′(v2)ξ(v1) = x−4v2

(1− xx2(v1−v2))(1− x−1x2(v1−v2))
: ξ(v1)ξ

′(v2) :

where

g1(v) = {x
2+2v}{x2+2r+2v}
{x4+2v}{x2r+2v} s(v) = (x2r−1+2v; x2r )

(x1+2v; x2r )

t (v) = (1− x2v)
(x2+2v; x2r )

(x2r−2+2v; x2r )

g′1(v) =
{x2v}′{x2+2r+2v}′
{x2r+2v}′{x2+2v}′ {z}′ = (z; x2(r−1), x4)

s ′(v) = (x2r−1+2v; x2(r−1))

(x−1+2v; x2(r−1))
t ′(v) = (1− x2v)

(x−2+2v; x2(r−1))

(x2r+2v; x2(r−1))
.

Appendix B. The proof of the commutation relations betweenK±i (v), E(v) and F (v)

The proof is a direct substitution of the Gauss decomposition ofL±-operators in the relations
(24)–(26). (One should be careful to deal with the order between the dynamicalR-matrices
and the Guass components ofL±-operators.) Here, we give the proof of equation (34)
as an example. After some straightforward calculations, one can obtain the following
commutation relations between the partial currentsE±(v) andF±(v)

[E±(v2), F
±(v1)] = K±1 (v1)

−1 c
±(v1− v2)

b±(v1− v2)
K±2 (v1)−K±2 (v2)

c′±(v1− v2)

b′±(v1− v2)
K±1 (v2)

−1

[E−(v2), F
+(v1)] = K+1 (v1)

−1 c
+(v1− v2+ c

2)

b+(v1− v2+ c
2)
K+2 (v1)

−K−2 (v2)
c′+(v1− v2− c

2)

b′+(v1− v2− c
2)
K−1 (v2)

−1
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[E+(v2), F
−(v1)] = K−1 (v1)

−1 c
−(v1− v2− c

2)

b−(v1− v2− c
2)
K−2 (v1)

−K+2 (v2)
c′−(v1− v2+ c

2)

b′−(v1− v2+ c
2)
K+1 (v2)

−1.

Then, we have

[E(v1), F (v2)] = K−2
(
v1+ c

2

){ c′+(v1− v2+ c
2)

b′+(v1− v2+ c
2)
− c

′−(v1− v2+ c
2)

b′−(v1− v2+ c
2)

}
K−1

(
v1+ c

2

)−1

+K+2 (v1)

{
c′−(v1− v2− c

2)

b′−(v1− v2− c
2)
− c

′+(v1− v2− c
2)

b′+(v1− v2− c
2)

}
K+1 (v1)

−1.

Using the following identity

c′+(v + iε)

b′+(v + iε)
− c

′−(v − iε)

b′−(v − iε)
= 1

x − x−1
δ(v)

[π̂ ]r−c[1]r−c
θ ′r−c[π̂ − 1]r−c

when

ε −→ 0θ ′t = (x − x−1)
∂

∂v
[v]t |v=0

we find equation (34).

Appendix C. The proof of the commutation relations (37)–(43)

First we prove the relations (37) and (38). From the properties (27) and (28), using the
Gauss decomposition forL±-operators we have

R±(v1, π̂)E(v2) = E(v2)R
±(v1, π̂ − 2c) R±(v1, π̂)F (v2) = F(v2)R

±(v1, π̂)

R∗±(v1, π̂)E(v2) = E(v2)R
∗±(v1, π̂) R∗±(v1, π̂)F (v2) = F(v2)R

∗±(v1, π̂ − 2c).

Note that with the relations (33a) and (33b), we have

E(v1)E(v2) = [v1− v2− 1]r
[v1− v2+ 1]r

E(v2)E(v1)

F (v1)F (v2) = [v1− v2+ 1]r−c
[v1− v2− 1]r−c

F (v2)F (v1).

In order to obtain the relations betweenH±(v), the relations betweenH±(v) and
E(v), F (v), we should deal with equation (30b). It can be rewritten as

a±(v1− v2)

a′±(v1− v2)
K±2 (v2)

[v1− v2+ 1]r−c[π̂ ]r−c
[v1− v2]r−c[π̂ − 1]r−c

K±1 (v1)
−1

= K±1 (v1)
−1 [v1− v2+ 1]r [π̂ ]r

[v1− v2]r [π̂ − 1]r
K±2 (v2).

Taking the limit ofv1 −→ v2 in both sides of the above equation, we have

K±2 (v)
[1]r−c[π̂ ]r−c
θ ′r−c[π̂ − 1]r−c

K±1 (v)
−1 = K±1 (v)−1 [1]r [π̂ ]r

θ ′r [π̂ − 1]r
K±2 (v).

Then we have two equivalent definitions ofH±(v)

H+(v) = K−2
(
v + c

4

) [π̂ ]r−c[1]r−c
θ ′r−c[π̂ − 1]r−c

K−1
(
v + c

4

)−1
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= K−1
(
v + c

4

)−1 [π̂ ]r [1]r
θ ′r [π̂ − 1]r

K−2
(
v + c

4

)
(78)

H−(v) = K+2
(
v + c

4

) [π̂ ]r−c[1]r−c
θ ′r−c[π̂ − 1]r−c

K+1
(
v + c

4

)−1

= K+1
(
v + c

4

)−1 [π̂ ]r [1]r
θ ′r [π̂ − 1]r

K+2
(
v + c

4

)
. (79)

From these two equivalent definitions ofH±(v), one can check equations (40)–(41). Here,
we give the proof of equation (42) as an example

H+(v1)H
+(v2) = K−2

(
v1+ c

4

) [π̂ ]r−c[1]r−c
θ ′r−c[π̂ − 1]r−c

×K−1
(
v1+ c

4

)−1
K−1

(
v2+ c

4

)−1 [π̂ ]r [1]r
θ ′r [π̂ − 1]r

K−2
(
v2+ c

4

)
= K−2

(
v1+ c

4

) [π̂ ]r−c[1]r−c
θ ′r−c[π̂ − 1]r−c

a′−(v1− v2)

a−(v1− v2)
K−1

(
v2+ c

4

)−1

×K−1
(
v1+ c

4

)−1 [π̂ ]r [1]r
θ ′r [π̂ − 1]r

K−2
(
v2+ c

4

)
= [v2− v1]r−c[1]r−c
θ ′r−c[v2− v1+ 1]r−c

a−(v2− v1)K
−
2

(
v1+ c

4

) 1

b′−(v2− v1)
K−1

(
v2+ c

4

)−1

×K−1
(
v1+ c

4

)−1 [π̂ ]r [1]r
θ ′r [π̂ − 1]r

K−2
(
v2+ c

4

)
= [v2− v1]r−c[v1− v2]r [1]r−c[1]r
θ ′r−cθ ′r [v2− v1+ 1]r−c[v1− v2+ 1]r

×K−1
(
v2+ c

4

)−1 a−(v2− v1)

b−(v2− v1)
K−2

(
v2+ c

4

)
×K−2

(
v1+ c

4

) a′−(v1− v2)

b′−(v1− v2)
K−1

(
v1+ c

4

)−1

= [v1− v2− 1]r [v1− v2+ 1]r−c
[v1− v2+ 1]r [v1− v2− 1]r−c

H+(v2)H
+(v1).

Here we have used the identity

a′±(v1− v2)

a±(v1− v2)
= a±(v2− v1)

a′±(v2− v1)
.

Similarily, we can prove the other relations amongH±(v). The following identites are very
useful for the proof

a+(v)a−(−v) = 1 a′+(v)a′−(−v) = 1.
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